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Abstract—Multicore systems have not only become ubiqui-
tous in the desktop and server worlds, but are also becoming the
standard in the embedded space. Multicore offers programa-
bility and flexibility over traditional ASIC solutions. However,
many of the advantages of switching to multicore hinge on
the assumption that software development is simpler and
less costly than hardware development. However, the design
and development of correct, high-performance, multi-threaded
programs is a difficult challenge for most programmers. Stream
programming is one model that has wide applicability in
the multimedia, signal processing, and networking domains.
Streaming is convenient for developers because it separates
the creation of actors, or functions that operate on packets
of data, from the flow of data through the system. However,
stream compilers are generally ineffective for embedded sys-
tems because they do not handle strict resource or timing
constraints. Specifically, real-time deadlines and memory size
limitations are not handled by conventional stream partitioning
and scheduling techniques. This paper introduces the SPIR
compiler that orchestrates the execution of streaming appli-
cations with strict memory and timing constraints. Software
defined radio or SDR is chosen as the application space
to illustrate the effectiveness of the compiler for mapping
applications onto the IBM Cell platform.
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I. INTRODUCTION

Multicore has emerged as the dominant paradigm for
high-performance computing. Example systems include the
Sun UltraSparc T1 that has 8 cores, the Sony/Toshiba/IBM
Cell processor that consists of 9 cores, the NVIDIA GeForce
8800 GTX that contains 16 streaming multiprocessors each
with eight processing units, and the Cisco CRS-1 Metro
router that utilizes 192 Tensilica processors. Putting more
cores on a chip increases peak performance, but assumes the
programmer and/or compiler have identified large amounts
of thread-level parallelism (TLP) to exploit the cores. Highly
threaded server workloads naturally take advantage of more
cores to increase throughput. However, the performance of
single-thread applications has dramatically lagged behind.
Traditional programming models, such as C, C++, and Java,
are poorly matched to multicore environments because they
assume a single instruction stream and a centralized memory
structure.

The stream programming paradigm offers a promising

approach for programming multicore systems, particularly
those used in the embedded space. Stream languages are
motivated by the application style used in image processing,
graphics, networking, and other media processing domains.
Example stream languages are StreamIt [1], Brook [2],
CUDA [3], SPUR [4], Cg [5], Baker [6], and Spidle [7].
Stream languages are generally variants of synchronous
dataflow wherein the application is represented as a directed
graph (stream graph) where each node represents an actor
and each arc represents the flow of data [8]. The number of
data samples produced and consumed by each node are stat-
ically specified. For this work, we utilize the StreamIt model
where a program is represented as a set of autonomous
actors (called filters) that communicate through first-in first-
out (FIFO) data channels [1]. During program execution,
actors fire repeatedly in a periodic schedule [9], [10]. Each
actor has a separate instruction stream and an independent
address space, thus all dependences between actors are made
explicit through the communication channels. Compilers can
leverage these characteristics to plan and orchestrate parallel
execution.

Stream programs contain an abundance of explicit paral-
lelism. The central challenge is obtaining an efficient map-
ping onto the target architecture. Often the gains obtained
through parallel execution can be overshadowed by the costs
of communication and synchronization. Resource limitations
of the system must also be carefully modeled during the
mapping process to avoid stalls. Resource limitations include
finite processing capabilities of each processing element,
interconnect bandwidth, and memory latency. Lastly, stream
programs contain multiple forms of parallelism that have
different tradeoffs on when they should be exploited. It is
critical that the compiler leverage a synergistic combination
of parallelism, while avoiding both structural and resource
hazards.

For this work, we focus on streaming for embedded
multicore systems. Software defined radio (SDR) is se-
lected as the area of focus because of its streaming nature.
Traditionally, the physical layer of wireless protocols is
implemented with fixed function ASICs. SDR promises to
deliver a cost effective and flexible solution by implementing
the wide variety of wireless protocols in software. Some
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of the greatest advantages of SDR are based on the “soft-
ware” aspect of the implementations. SDR promises greater
flexibility, multi-mode operation, lower engineering efforts
and costs, and shorter time-to-market. These are all based
on the assumption that software development is easier than
hardware development.

In a wireless protocol, the execution behavior is relatively
static. However, real-time latency constraints are required
due to the external environment (e.g., synchronization with
the bay station). Further, multicore hardware used in SDR
systems must be extremely lean to meet tight power con-
straints of a mobile terminal. In particular, the size of the lo-
cal memory associated with each core is often small. Caches
are typically not used due to their cost and power overhead,
thus the burden of memory management is on the compiler.
Multiple buffering for reducing data transferring latency
complicates this problem. Prior work on stream compilation
is focused on more general purpose architectures, such as
Raw, and uses relatively simple applications [9], [10]. Thus,
they do not consider memory or latency constraints during
the partitioning an mapping phases of the compiler.

In this paper, we present a coarse-grained software
pipelining approach for mapping streaming applications onto
embedded multicore systems. This work extends [10] to
deal with memory and timing constraints. The output of
the scheduler is an assignment of stream kernels to cores
and time slots, allocation of variables to local memory, and
generation of explicit data transfer operations (DMAs) to
move data from core to core. The problem is formulated
as an integer linear program and solved using the CPLEX
commercial solver. The scheduler is part of a larger compi-
lation system called SPIR (Signal Processing Intermediate
Representation). SPIR takes the C language with minimal
extensions for representing dataflow programming paradigm
as input, rather than the specialized streaming language such
as StreamIt. Using C can minimize the entry-level efforts
for programmers to describing the streaming programming
paradigm.

The contributions of this paper are summarized below.
• A stream scheduler that maximizes performance by ex-

ploiting pipelining parallelism while satisfying memory
constraints imposed by the target hardware.

• A scheduler that provides both the lower and upper
bounds on the number of cores which can meet the
timing constraints given by the application.

• The effectiveness of SPIR is evaluated using real wire-
less protocols on the IBM Cell system.

• We compare the effectiveness of our scheduler under
memory and latency constraints with [10] to assess its
benefits.

II. THE COMPILATION OVERVIEW

SPIR is comprised of a frontend translation from the input
C program into dataflow graphs; task scheduling; and code

generation of threaded code for a multicore target architec-
ture. The overall task-level compilation flow is shown in
Figure 1.
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Figure 1. The SPIR task-level compilation: (a) a sequential input program,
(b) a stream graph, (c) a task scheduling, and (d) a parallelized output code

Input language The input language to SPIR is a subset of
the C language with several keyword extensions for denoting
the streaming scope within an application. Figure 1 (a)
illustrates a part of example input. The range enclosed by
stream{ } is parallelized using coarse-grained software-
pipelining. Only one for statement is allowed within
stream{ }, for now. The body of the for corresponds
to the dataflow or stream graph of the system. In the body
of for statement, kernel function calls and simple if state-
ments are allowed. We currently support one stream{ }
for a program.

For kernel functions, a set of restrictions is imposed
on the conventional C syntax to conform to the dataflow
programming model [8]. Streaming data are transferred
from one kernel functions to another by passing arguments
between them. The arguments of a kernel function should be
either read-only or write-only. For example, in Figure 1 (a) at
line 16, func a writes only its output data into the arrays a 0
and a 1, which makes a 0 and a 1 write-only arguments of
func a. These arguments, the data in the arrays, are passed to
func b as shown at line 17. func b can read the data in a 0
and a 1, but must not write them. To func b, a 0 and a 1
are read-only. Except for the data passed through arguments,
all other data used in one kernel should not be shared with
any other kernel. Given that all these restrictions are obeyed,
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SPIR statically infers the type of a function argument such as
read-only or write-only. A kernel function can have multiple
arguments, where each argument has a fixed size. A kernel
cannot handle arguments of changing size. In Figure 1 (a),
at lines from 1 to 5, arrays with fixed size are defined. Note
that a filter, for example, a FFT (Fast Fourier Transform)
can have a token of changing size. To support this, one
FFT algorithm can have multiple kernels for different sizes
per token. If the size of a token is dependent on run-time
environment, if statements can be used. Variations in token
size can be modestly supported in this fashion.

Based on the information, the frontend of SPIR builds
a dataflow or stream graph for the application as in Fig-
ure 1 (b). A node corresponds to a kernel function call or
to a the condition of an if statement. An edge denotes a
transfer of data between the two kernel function calls. A
control transfer by an if statement is also denoted by an
edge annotated either with true or false. In this paper, a node,
a kernel function call, and a task are all used interchangeably.
Task scheduling Given a stream graph and a target
platform, the task scheduler assigns each node in the stream
graph to a processor in the target platform. It also allocates
stream buffers, and generates DMAs under given memory
and timing constraints. Figure 1 (c) shows the result of this
scheduling in parentheses. For a node, a software pipeline
stage and a processor are assigned. The details on the task
scheduling will be described shortly in Section III.
Target architecture Our target architecture can be any
multicore platform that has a control processor and multiple
data processors or processing elements (PE), such as IBM
Cell and ARM Ardbeg [11][12]. In this paper, we used IBM
Cell as our target architecture. It has a PowerPC control
processor and a number of SPEs. Each SPE is equipped
with a software-managed local memory and a DMA engine,
and mainly specialized for heavy-duty data processing. Since
these PEs often perform best without the presence of control
flows, SPIR adopts function-offload model.

For a SPE, one PPE thread is generated, which spawns
kernel function calls and DMA operations to the correspond-
ing SPE. A SPE program handles kernel function calls and
DMA operations as dictated by the PPE thread. The program
image of a PE contains the local data and codes of kernel
functions that are mapped to the PE.
Code generation The code generation phase of SPIR
generates a thread for each PE, which is controlled by the
control processor as shown in Figure 1 (d). Each thread has
a kernel-only software pipelined form. The code generation
phase adopts a modified predicate execution to support
control flows from if statements. The condition in an if
statement is also multiply buffered for the statements in
different software-pipelined stages. The statements that were
in the body of an if are guarded by these buffered if
conditions. The code generation phase allocates buffers as
needed by the task schedule and predicated decisions.

To summarize, SPIR takes a sequential dataflow program
represented textually in C language and generates a multi-
threaded parallel program for a multicore system. SPIR
is aware of the hardware and software constraints and
maximizes the performance within those constraints.

III. MODULO SCHEDULING WITH MEMORY AND
REAL-TIME CONSTRAINTS

A. Processor Assignment for Maximizing the Throughput

In this section, we first review the processor assignment
in [10], which aims to maximize the throughput. Consider a
stream graph G = (V,E) corresponding to a stream program.
A node corresponds to a kernel function call or to a the
condition of an if statement. An edge denotes a transfer
of data between the two kernel function calls. Let M = |V |,
and P be the number of PEs. For software pipelining, each
task should be assigned to exactly one PE. To maximize
the throughput of the pipelining, we need to minimize the
maximum workload among all PEs.

A 0-1 integer variable ai j is introduced for every task i to
denote if i is assigned to a PE j. Equation (1) ensures that
a task is assigned to exactly one PE.

P

∑
j=1

ai j = 1 for all i = 1, · · · ,M (1)

The workload of task i on PE j is w(i) ·ai j. The total
workloads for PE j are ∑

M
i=1 w(i) ·ai j. The objective is

to minimize the maximum of these workloads among all
processors. The resulting integer linear program (ILP) has
the objective function (3), with constraints (1) and (2) [10].
The variable II is the initiation interval of the modulo
scheduling. We call this problem PA-ii standing for Processor
Assignment for minimizing the Initiation Interval.

M

∑
i=1

w(i) ·ai j ≤ II for all j = 1, · · · ,P (2)

Minimize II (3)

Problem PA-ii is a version of classic P-ary partition problem,
which is NP-hard. Our ILP formulation is based on the
assumption that the time spent in DMA within II are
shorter than II so that DMA time is effectively hidden being
overlapped with kernel task’s execution, as in [10]. As shown
in Figure 2 (c), a DMA operation executes in parallel with
task v.

B. Processor Assignment for Maximizing the Throughput
under Memory Constraints

PA-ii assumes infinite local memory per PE. However, a
PE has a fixed amount of memory. We extend the processor
assignment to be aware of memory constraints. We consider
a buffer allocation scheme in which all the buffers used for a
task are allocated within the memory of the processor where
the task is assigned.
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Figure 2. An example of multiple buffering in the software pipelining:
(a) when both producer and consumer tasks are in the same processor, and
(b) when they are in different processors. Finally, (c) shows the pipelined
execution of (b).

In a software pipelined code, multiple buffers are intro-
duced to keep up with the difference in the stages between
two tasks. Figure 2 illustrates how many buffers are intro-
duced [10]. Let su denote the pipelined stage of node u.
When two nodes u and v are in the same processor, the
number of buffers for saving an output argument of node
u that will be fed to another node v as input is sv− su +1.
Those same buffers are also used as input to node v. When
two nodes u and v are in two different processors PE0 and
PE1, a DMA operation d that copies the output of u in PE0’s
memory to the input of v in PE1’s memory is needed. The
number of buffers for an output of u is now sd − su + 1,
while that for an input of v is sv− sd + 1, ( su < sd ≤ sv ).
The total amount of data buffers a task (i.e. a node) uses is
calculated by aggregating the buffer usages of all the output
and input arguments of the task. The total amount of buffers
due to the output arguments for task u is

out bu f s(u) =

∑
∀i∈{output args of u}

(
max

∀v,v is a consumer of i
(sv− su +1)

)
· size(i)

(4)

where size(i) is the size of argument i, which is defined in
the given program by the type and the number of elements
in the array corresponding to argument i. For example,
in Figure 1 (a), the size of argument a 0 of f unc a is
16*4=64 bytes when an integer takes up 4 bytes. We call
node v a consumer of argument i of node u, if u’s output
corresponds to i is fed to v. An output argument can have
more than one consumer like b cd of f unc b in Figure 1 (a)
and (b). Similarly, the total amount of buffers needed due
to all input arguments for a task v is

in bu f s(v) =

∑
∀i∈ {input args of v}

(
max

∀d,d is a producer DMA of i
(sv− sd +1)

)
· size(i)

(5)

For an input argument of node v, we only consider producers
that are DMAs. Otherwise, the buffers for output arguments
of v’s producer are also used for input arguments of v, since

…

Figure 3. A code snippet for merging two inputs from two PEs.

node v and v’s producer are in the same PE. An input
argument can have more than two producers due to the
control flow of the program. For example, d e of f unc e
has two producers f unc d0 and f unc d1 in Figure 1 (b). A
DMA, a memory copy operation, is added after f unc d0 and
f unc d1, before f unc e to merge the the data from f unc d0
and f unc d1, as described in the code snippet in Figure 3.

In equation (5), a set of multiple buffers are introduced
for an input argument. For example, for d e of f unc e,
NUM D E IN buffers are generated in Figure 3. Let b(i)
denote the amount of data buffer that task i uses. Then,
the sum of out bu f s(i) in (4) and in bu f s(i) in (5) is b(i).
Now, let mem( j) denote the amount of local memory PE j
has for data. The following inequality (6) gives constraints
on the assignment of tasks to a PE based on the available
data memory size on the PE.

M

∑
i=1

b(i) ·ai j ≤ mem( j) for all j = 1, · · · ,P (6)

As mentioned before, 0-1 variable ai j indicates if node i is
assigned to PE j or not. If we also treat b(i) as a variable,
equation (6) ends up with multiplications of variables. We
attempt to keep b(i) within a constant since we aim to define
a linear program which can be solved within a time limit. To
make b(i) constant, first, sk− sl , k, l = 1, · · · ,P, in (4) and
(5) need to be bound by constants. Second, DMAs should
be decided for (5). Once we make b(i) constant, we solve a
ILP problem as follows.

MPA-ii: minimize II, subject to (1), (2) and (6). (7)

MPA-ii stands for Memory-constrained Processor Assign-
ment for minimizing Initiation Interval. To define a tractable
memory-constrained processor assignment, we partition the
problem into successive phases as described below. We solve
this set of phase-ordered steps optimally to obtain a high-
quality solution efficiently.
Step 1 conservative assumption: make a conservative as-
sumption that all edges in stream graph G are across different
PEs.
Step 2 initial stage assignment: assign the earliest possible
stages to the nodes in G based on the assumption in step 1
(Algorithm 1).
Step 3 buffer usage estimation: calculate the buffer usage
of a node, b(·) using the stages calculated in step 2.
Step 4 MPA-ii: solve the ILP problem (7) using the b(·) in
step 3.
Step 5 stage assignment optimization: based on the proces-
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sor assignment solution of MPA-ii, ai j, i = 1, · · · ,M, and j =
1, · · · ,P of the ILP problem, reassign the stages so that the
buffer usages decrease (Algorithms 2 and 3 in Section III-C).

If a producer node i and a consumer node j are in different
PEs, our scheduler does not give them the same software
pipelined stage. Otherwise, the execution of nodes i and j are
not parallelized, but serialized though they are in different
PEs. Thus, s j must be larger than si. To come up with stages
si to be used for out bu f s(·) in (4) and in bu f s(·) in (5),
we conservatively assume that all edges in a stream graph
are across two different PEs. In other words, we assume that
for every edge (u,v) of G, there is a DMA-node d between
u and v. Nodes u and v are called head(d) and tail(d),
respectively. We fix the stage of a DMA-node d to sv−m,
when v = tail(d). We give m a constant value zero when a
DMA-node has the same stage with its consumer node, and
1, otherwise. Now the stages of two nodes u and v need to be
apart at least by 1+m. In stream graph, G, stages of all nodes
in G and DMA-nodes corresponding the edges in G are
obtained as described in Algorithm 1. The stage of a DMA-
node generated from Algorithm 1 is guaranteed to be larger
than that of its head and not to be larger than that of its tail.
Note that the differences between stages in Algorithm 1 are

Algorithm 1 Initial stage assignment to define b(i) for MPA-
ii (in step 2).
Input: Stream graph G, and the stage difference between a

DMA-node and its consumer, m.
Output: Stage s for each node in G and for each DMA-

node.
L := the list of nodes in G in the topological order;
for all node n in L do

sn := max∀p,p is a parent of n(sp) +(1+m) ;
end for
for all DMA-node d corresponding to an edge in G do

sd := stail(d)−m;
end for

sufficiently large. ILP constraints (1) and (2) are independent
of software pipelined stages. Software pipelined stages are
increased to exploit the parallelism when a producer and
a consumer nodes are in different PEs. Algorithm 1 fully
considers those parallelisms by always separating a producer
and a consumer in different stages. Increasing stages more
only unnecessarily increases the buffer usage.

Using the stages obtained so far, the usage of buffers
b(·) is calculated as in (4) and (5) (step 3). Finally, the
ILP problem (7) MPA-ii is solved (step 4). Depending on
the actual processor assignment solution, ai j, i = 1, · · ·M,
and j = 1, · · ·P, there can be a consumer and a producer
that are assigned to the same PE. If they are in the same
PE, they do not need to be in different stages. Larger stage
differences incur larger buffer usages. We reassign the stages
of nodes based on the processor assignment solution ai j

so that we further decrease the usage of buffers (step 5).
Section III-C describes this process. The stage assignment
in step 5 is an optimization that can be omitted. The stages
from Algorithm 1 can be used without step 5 because the
processor assignment solution of MPA-ii does not change by
step 5.

Note that the code size of a filter is constant. This constant
value is currently ignored, but can be easily added to b(·) of
inequality (6). If problem (7) is not feasible, we assume
some portions of the data must be spilled to the global
DRAM. Spilling data is one of our future work.

C. Stage Assignment Optimization

As the difference in stages between two nodes increases,
the usage of data buffers increases. Further, the total number
of pipelined stages determines the length of filling and
draining phases of the whole pipeline, which is also an
overhead of software pipelining. In step 5, we attempt to
decrease these overheads by reducing the number of stages.
First, we calculate the earliest possible stages based on the
processor assignment solution of MPA-ii obtained in step 4.
The detailed algorithm is given in Algorithm 2. A newly
calculated stage of a node is always smaller than or equal
to the initial stage obtained from Algorithm 1 because a
consumer and a producer can have the same stage if they
are assigned to the same PE.

However, these new stages cannot be used as they are.
Let li and ei denote the initial stage from Algorithm 1 and
the new earliest possible stage from Algorithm 2, of node i,
respectively. The value ei is never larger than li. However,
(e j−ei) can be larger than (l j− li) for node i and j, which
can lead to the violation of the conservative assumption on
the amount of buffer usages out bu f s(·) and in bu f s(·) in
equations (4) and (5). A stage li can decrease only to a
stage si within the range of [ei, li] as long as the difference
of the stages s j− si does not exceeds the initially assumed
difference l j − li, for any two nodes i and j in G or in
DMA-nodes induced from MPA-ii. This is achieved by a
backward traversal of the given stream graph G as described
in Algorithm 3. Algorithm 3 always keeps the usage of
buffers within the conservative assumption, and attempts to
further reduce it. Figure 4 illustrates the stage assignment
of the stream graph in Figure 1 (b) through Algorithms 1,
2, and 3, when m is 1. Note that the difference of stages
between node d1 and the DMA-node after it increases from
four to six by Algorithm 2 as shown in Figure 4 (a) and (b).
The difference six is decreased back to four by Algorithm 3.
Note that DMA-nodes over the edges (a,b) and (b,d1) in
Figure 4 (a) are eliminated in Figure 4 (c), reducing the
number of total stages and the usage of buffers.

Finally, the resulting stages from Algorithm 3 are used.
When there is no memory constraints, PA-ii in Section III-A
is solved. Stage assignment is done only by Algorithm 2
after the processor assignments are obtained from PA-ii.
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Figure 4. Stage assignment process when m = 1: (a) the initial stage assignment using Algorithm 1, (b) the stage assignment according to the processor
assignment from MPA-ii using Algorithm 2, and (c) the final stage assignment using Algorithm 3. In (c), [li,ei], ∆i and si are annotated to a node i as
described in Algorithm 3.

Algorithm 2 Calculating the earliest possible stage based
on the processor assignment of MPA-ii (in Step 5).
Input: Stream graph G, processor assignment, proc(i) for

all i in {1, · · ·M}, and the stage difference between a
DMA-node and its consumer, m.

Output: sn for all node n in G and for all DMA-node.
L := the list of nodes in G in the topological order;
current stage := 0;
for all node n in L do

for all node p which is a parent of n do
if proc(p) 6= proc(n) then

st := sp +(1+m);
else

st := sp;
end if
if st > current stage then

current stage := st;
end if

end for
sn := current stage;
for all node p which is a parent of n do

if proc(p) 6= proc(n) then
Introduce a DMA operation between node p and
n at (sn−m);

end if
end for

end for

Algorithm 3 Post-fix on the stage adjustment (in Step 5).
Input: A range of possible stage [e, l] for all nodes in G,

where e is the stage obtained from Algorithm 2, and l is
the initial stage from Algorithm 1. The stage difference
between a DMA-node and its consumer, m.

Output: sn for all node n in G and for all DMA-node.
L′ := list of nodes in G in the reverse topological order;
while L′ is not empty do

n := pop a node at the front of L′;
child delta := min(0,mini is a child of n(∆i));
∆n := min(child delta, ln− en);
sn := ln−∆n;

end while
for all DMA-node d′ derived from the solution of MPA-ii
do

sd′ := stail(d′)−m;
end for

D. Processor Assignment for Minimizing the Number of
PEs under Real-time Constraints

Many streaming applications are real-time applications.
Such applications impose one or more latency constraints
between two tasks in applications.

In the software pipelined code, the actual latency from one
task to another should not exceed the constraint given by the
application. The actual latency from tasks i to j is a function
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of the stage difference between i and j and the initiation
interval, II of the pipelined code. For example, in Figure 5,
the latency from the beginning of f unc a to f unc c is
(2−0+1) ∗ II when the stages of f unc a and f unc c are
0 and 2. The latency between two tasks whose software
pipelined stages are s1 and s2, (s2 >= s1) is, conservatively
speaking, (s2− s1 +1)∗ II, where II is the initiation interval
of the pipeline. Let LAT = {lat(i, j)|i, j = 1, · · · ,M} be
the set of latency constraints given from the application.
The time between the completion of i and the start of j,
start time( j) − completion time(i) + 1, must not be longer
than lat(i, j). Thus, start time( j)− completion time(i)+ 1
≤ (s j− si +1) · II. We obtain inequalities (8).

(s j−si +1)·II≤ lat(i, j) for all lat(i, j)∈LAT, i, j = 1, · · · ,M
(8)

We estimate the pipelined stages as described in steps 1 and
2 in Section III-A to make (s j− si + 1) becomes constant.
Then inequality (8) turns into a constraint on II such that,

II ≤ α, where α = min
∀lat(i, j)∈LAT

(
lat(i, j)

s j− si +1
) is a constant.

Consider the following problem.

Minimize II, subject to (1), (2),and (9) (9)

Problem (9) never produces smaller II than the II from PA-
ii in Section III-A, because it has another constraint (9)
added to PA-ii. What we can do best is comparing α in
(9) to II from PA-ii to ensure if all the latency constraints
can be met given PEs. Now we attempts to minimize the
number of PEs to meet the given latency-constraints, which
is represented by (9). It is a classic bin-packing problem,
where a bin is a PE with a capacity α, and a task is an
item with a weight w(·): given a bin size α and a list
w(1), · · · ,w(M) of sizes of items to pack, find a minimal
integer P and P-partition S1 ∪ ·· · ∪ SP of {1, · · · ,M} such
that ∑i∈Sk

w(i) ≤ α, for all k = 1, · · · ,P. This bin-packing
problem is formulated as an ILP problem (10), LPA-numPE,
standing for Latency-constrained Processor Assignment for
minimizing the Number of PEs. A 0-1 integer variable ai j
is true if and only if task i is assigned to a PE j, where
i, j = 1, · · · ,M. Another 0-1 integer variable y j is true if and
only if PE j is used.

LPA-numPE : minimize
M

∑
j=1

y j subject to (10)

M

∑
j=1

ai j = 1 for all i = 1, · · · ,M

M

∑
i=1

w(i) ·ai j ≤ α · y j for all j = 1, · · · ,M

0≤ ai j ≤ y j ≤ 1 for all i, j = 1, · · · ,M

This formulation gives a set of useful bounds: (1) a minimum

II

II

II

–

Figure 5. The relationship between the software pipelined stages and the
latencies in time.

number of PEs, LBPE , that satisfies given timing constraints,
and (2) a minimum number of PEs, UBPE , for achieving
the best possible II of the application, which is the largest
workload among all kernels. Let the best possible II of the
application be denoted by IIbest . LBPE is obtained solving
LPA-numPE given the latency constraints, while UBPE is
obtained solving LPA-numPE by substituting α with IIbest .
Given a latency constraint in the form of inequality (9), it can
always be met using at most LBPE PEs for that constraint, if
it is not smaller than IIbest . If the constraint, more precisely,
α of inequality (9), is smaller than IIbest , there is no feasible
system for satisfying the constraint. On the other hand, when
the system has UBPE PEs for an application, adding more
PEs would not help improve the performance or meet any
unsatisfied timing constraints.

The bounds LBPE and UBPE can be used in solution
space exploration for finding a schedule satisfying both
timing and memory constraints. One scenario is shown in
Figure 6. First, the range of PEs, [LBPE , UBPE ] that satisfies
timing constraints is obtained by LPA-numPE. Under the
assumption that the size of local memory per PE is fixed,
the designer can increase the number of PE from LBPE to
UBPE until a solution that can satisfy the memory constraints
as well. If such a solution is found before P exceeds UBPE ,
P is the smallest number of PEs that can meet the timing
and memory constraints of the application. Once P becomes
larger than UBPE , it helps meet the memory constraint by
providing more local memories, but does not improve the
performance. Instead of adding more PEs, the designer can
alternatively choose to increase the size of local memory per
PE. Figure 6 illustrates one exploration example that does a
sequential search on P, among many possible options. The
designer can always take advantage of a binary search.

IV. EXPERIMENTAL RESULTS

A. Experimentation Infrastructure and Benchmarks

The SPIR compiler is implemented within the SUIF
compiler framework [13]. With our own modifications, we
use the SUIF compiler to parse our input C language with
keywords, to apply dependency analysis on array names and
to generate multi-threaded code.
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Inputs:
- Iibest, memory per PE
- timing constraints
- memory constraints

calculate UBPE, LBPE using LPA-numPE
UBPE = min(UBPE, AVAILABLEPE)

if LBPE < UBPE

P = LBPE, 

solve MPA-ii problem using P

if solution exists

P = P + 1

if P ≤ UBPE

no feasible solution

Just follow the ‘yes’ path or 
increase the local memory size per PE

solution found!

yes

no

no

yes

yes

no

Figure 6. Exploring the design space for obtaining a solution satisfying
both timing and memory constraints.

We evaluate our compiler with the 4G, WCDMA and DVB
protocols. 4G is a next generation wireless protocol aimed
at very high data communication rates. WCDMA (Wideband
Code Division Multiple Access) is a common 3G protocol.
DVB (Digital Video Broadcast) is a widely used protocol
for digital media broadcasting. Each example consists of
between 10 to 20 kernels of varying workload granularity
of 100s to 1000s of cycles. We have assumed that these
programs operate at a fixed data rate and they are expressed
as a single stream graph.

We ran our experiments on a PlayStation3 equipped with
a Cell processor, allowing us to measure runtimes as the
number of PEs varied up to 6 processors.

B. Scalability of Our Memory-constrained Scheduler

We evaluate how well the performance of MPA-ii scales
with the number of PEs. Figures 7 and 8 show the relative
speed up over a single PE based on II and the actual
execution times, respectively. Results are from our memory-
constrained scheduler, MPA-ii. Local memory size per PE
is given as 256 KB. Both graphs show the gradual increase
of performance as the number of PEs increase and begin
to lose the scaling factor after certain number of PEs. In

Figure 7, the performance of DVB never increases after
four PEs since it meets its bound on II, IIbest , at four
PEs. Likewise, WCDMA meets its bound on five PEs. Only
the performance of 4G increases up to twelve PEs. As
mentioned in Section III-D these bounds on II, IIbest can
be easily found by solving problem LPA-numPE in (10).

The actual execution times illustrate the same trend. One
exception is WCDMA, which does not scale well at three and
five PEs. We note that WCDMA is the hardest to parallelize
due to the granularity of its kernels. It has a few very
large kernels with several small kernels. The workload of
small kernels are even shorter than the workload of DMA
operations, which hinders the hiding of the DMA operation
latencies.
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Figure 7. MPA-ii’s relative predicted speedup in II, normalized to a single
PE.
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Figure 8. MPA-ii’s relative speedup in execution time, normalized to a
single PE.

C. Comparison Between the Memory-constrained Scheduler
and Baseline Scheduler

This section evaluates the performance of our memory-
constrained scheduler, MPA-ii, in finding solutions by com-
paring it against our baseline scheduler, PA-ii. PA-ii attempts
to minimize II assuming unlimited local memory at each PE.
For all three benchmarks, we observe that MPA-ii can find
solutions that PA-ii could not find. Where both schedulers
find a solution, the performance from both of them (based
on II) is the same. That is, MPA-ii is able to find more
solutions, without degrading the quality of the schedule.
Figure 9 shows the comparison between MPA-ii and PA-ii
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4G number of PEs
LMsize 1 2 3 4 5 6
32 KB
64 KB +
128 KB + + +
256 KB ∗ ∗ ∗ ∗ ∗ ∗
512 KB ∗ ∗ ∗ ∗ ∗ ∗
1 MB ∗ ∗ ∗ ∗ ∗ ∗

DVB number of PEs
LMsize 1 2 3 4 5 6
32 KB
64 KB
128 KB + + + + +
256 KB ∗ ∗ ∗ ∗ ∗ ∗
512 KB ∗ ∗ ∗ ∗ ∗ ∗
1 MB ∗ ∗ ∗ ∗ ∗ ∗

WCDMA number processors
LMsize 1 2 3 4 5 6
32 KB
64 KB + + + +
128 KB + + + + +
256 KB ∗ ∗ ∗ ∗ ∗ ∗
512 KB ∗ ∗ ∗ ∗ ∗ ∗
1 MB ∗ ∗ ∗ ∗ ∗ ∗

Figure 9. The result of memory constrained scheduling: LMsize denotes the size of local memory per PE.

by marking each design point. A design point is composed
of a number of PEs and the size of local memory per PE. A
blank(’ ’) means there is no feasible solution so that none
of the two schedulers can find a solution. An asterisk(’*’)
denotes that both schedulers find feasible solutions. Finally,
a plus(’+’) denotes that only MPA-ii finds a feasible solution
while the solution by PA-ii is not able to meet the memory
constraints.

D. Design Space Exploration with Latency Constraints

Section III-D shows that LBPE , the minimum number
of PEs for meeting latency constraints, is given by our
latency-constrained scheduler LPA-numPE. Figures 10, 11,
and 12 illustrate LBPE for a certain range of II, for three
benchmarks, respectively. They also show that IIbest for each
of them, denoted by blue lines, are met by 15, 4, and 5 PEs.
In other words, 15, 4, and 5 are UBPEs of the applications
(green bars).

We can use this information as a starting point for
exploring the design space comprised of the number of
PEs, constraints on memory and the performance. Figure 13
shows the relative scheduling performance of the WCDMA
protocol on a system supporting up to 5 PEs. The local
memory size per PE is varied from 32 KB to 256 KB. The
numbers represent the relative II. Smaller II means better
performance. Suppose the latency-constraint is 30 in terms
of II. The range [LBPE , UBPE ] is [2, 5]. One solution is 3
PEs and 64 KB per PE if the memory size is fixed as 64 KB.
But, if the size of memory per PE is enlarged to 128 KB, 2
PE and 128 KB is another solution. It is shown that we can
meet equivalent performance or still meet timing constraints,
with a variety of system set-ups. The user can choose one
as needed.

V. RELATED WORK

Dataflow Scheduling. There has been numerous compi-
lation projects on mapping dataflow graphs onto multi-core
processors. Depending on the underlying dataflow model,
some requires run-time system support, while others can
generate compile-time schedules. In the MIT StreamIt com-
piler [14], the underlying model is based on the Synchronous
Dataflow (SDF) model. They have examined the different
static dataflow scheduling algorithms in [15], and their
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Figure 10. LBPE and IIbest of 4G.
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Figure 11. LBPE and IIbest of DVB.

impacts on the run-time execution. There are other projects,
such as the Ptolemy [16], PeaCE [17], and DIF [18], that
support multiple different dataflow models. This means that
they cannot generate fully static run-time schedules, and
have to provide run-time scheduler for run-time execution
of dataflow actors.

Compilation Support for Multi-core DSP Processor.
There has been numerous compilers for other multi-core
DSP processors. The IBM Cell compiler is the most relevant
to this study because its architecture [11] is the most similar
to the Ardbeg processor architecture. Most of the IBM Cell
compilation effort is focused on provided efficient single PE
performance through various data-level parallelization tech-
niques [19]. [20] advocates a multi-tier programming ap-
proach, which is similar to this thesis’s proposed two-tiered
compilation approach. However, it does not provide a com-
pilation system that supports automatic code generations.
More recent effort [10] has started to examine the function-
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Figure 12. LBPE and IIbest of WCDMA.

WCDMA number processors
LMsize 1 2 3 4 5
32 KB
64 KB 19 13 10
128 KB 22 19 13 10
256 KB 45 22 19 13 10

Figure 13. The relative II for different hardware set-ups: smaller is better.

level compilation methodology. There are other multi-core
compilers that are not based on compiling dataflow models.
These include the compiling the Brook streaming language
onto multi-core processors [21], loop-centric parallelizing
compiler for Vector-thread architecture [22], and basic-block
level parallelization for the TRIP EDGE architecture [23].

Software Pipelining. In the compiler domain, mod-
ulo scheduling is a well known software pipelining tech-
nique [24]. There has been previous work purposing
constraint-based modulo scheduling, including [25], and
[26]. But all of these techniques are geared toward
instruction-level modulo scheduling. [27] extends the mod-
ulo scheduling to software pipeline any loop nest in a multi-
dimensional loop, which conceptually is similar to coarse-
grained modulo scheduling. To our knowledge, there have
not been any previous work exploring coarse-grained mod-
ulo scheduling for MPSoC architectures. However, the idea
of coarse-grained software pipelineing has been explored
before. [28] has proposed an algorithm that automatically
breaks up nested loops, function calls, and control code into
sets of coarse-grain filters based on a cost model. And, these
sets of filters are then generated for parallel execution. [29]
has proposed of using function-level software pipelining to
stream data on the Imagine Stream Architecture. [9] also
explored the idea of coarse-grained software pipelining on
a tiled architecture.

VI. CONCLUSION

Stream programming is a natural programming model for
many applications including SDR. This paper has introduced
techniques for enabling stream compilation to embedded
systems where timing and memory constraints are first
class design considerations. We have demonstrated this by

evaluating 3 protocols with our SPIR compiler and shown
that our task scheduler produces scalable code that can meet
a range of timing and memory constraints.
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